Fire Modeling for Smoke Control Design

Presented by:

Rolf Jensen & Associates, Inc.
Thomas Izbicki. P.E.

Copyright Materials

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© Rolf Jensen & Associates, Inc.
2011
Overview

- Smoke Control Requirements
- Smoke Control Design Considerations
- Fire Model Types
- Case Study
- Questions

Smoke Control Requirements

- Early Prescriptive Requirements (up to early 1990’s)
 - Air Changes
 - Operable Windows
- Current Prescriptive Requirements
 - Passive or active smoke control
 - Based on design fire and specific guidelines for feature being protected
- Performance Requirements
 - Establish Performance Goals
 - Outline Design Method
 - Acceptance Testing Requirements
IBC Smoke Control

• Prescriptive requirements based on specific objectives
• Design Guidelines - Section 909
• Specific requirements based on building feature being protected

Building Features with Smoke Control Provisions:

• Covered Mall Buildings (Section 402)
• Atriums (Section 404)
• Underground Buildings (Section 405)
• Stages (Section 410.3.7)
• Stair Protection (Section 1005.3.2.5)
• Smoke Protected Assembly Seating (Section 1008.5.2)
• Pedestrian Bridges/Tunnels (Section 3104)
Atria/Covered Malls

- Atrium is typical feature for smoke control considerations
- Refers to IBC Section 909, Smoke Control Systems
 - Pressurization Method
 - Airflow Method
 - Exhaust Method
- Exhaust Method considered most applicable to atria/covered malls

IBC Smoke Control Methodologies

- Pressurization Method ("zoned approach")
 - Need a barrier for pressure differential such as smoke barrier
- Airflow Method
 - Most often used in combination with another method
- Exhaust Method
 - Most common
- Analysis
 - Stack Effect
 - Temperature Effect
 - Wind Effect
 - HVAC Systems
 - Climate
 - Duration of Operation
Pressurization Method

• Maintain pressure difference across smoke barriers
 – Minimum 0.05 inch water gage
 – Maximum based on door opening/closing forces

• Problems
 – Building may be tighter or looser than calculated
 – Oversizing fans means door opening problems
 – Balancing with stairs

Airflow Method

• Can be used for unprotected vertical openings between zones

• Velocity required through opening (fpm):
 \[v = 217.2 \left(\frac{h (T_r - T_o)}{T_r + 460} \right)^{1/2} \]

 Where:
 \(h \) = height of opening - ft.
 \(T_r \) = Temperature of smoke - °F
 \(T_o \) = Ambient temperature - °F

• Airflow cannot exceed 200 fpm.
Exhaust Method

• Used for large enclosed volumes
• Maintain smoke 10 ft. or 6 ft. above highest walking surface used for egress
• Make up air by natural or mechanical means is required
• Maximum make up air velocity -- 200 fpm
• Exhaust high and supply low
• Plugholing
• Analyze balcony conditions

Exhaust Method

• Based on plume type
 – Axisymmetric
 – Balcony spill
 – Window
Axisymmetric Plume

- Prototypical plume
- Cone with tip at bottom
- Air entrained on all sides

\[z_1 = 0.533 \ Q_c^{2/5} \]

where \(z_1 \) = flame height
\(Q_c \) = convective heat release - usually 70% of fire size

Axisymmetric Plume

- Used when no obstructions to the plume

- Determine Flame Height
Axisymmetric Plume

• Determine Formula to Use
 – Smoke layer must be at least 6 feet above highest walking surface (z)
 – 3 formulas depending on flame height vs required smoke layer height

\[
\begin{align*}
 \text{If } z < z_1 & \quad m_p = 0.0208 Q_c^{3/5} z \\
 \text{If } z = z_1 & \quad m_p = 0.0011 Q_c \\
 \text{If } z > z_1 & \quad m_p = 0.022 Q_c^{1/3} z^{5/3} + 0.0042 Q_c
\end{align*}
\]

- Note impact of z where clear height is greater than flame height

Axisymmetric Plume

• Convert \(m_p \) (mass flow rate) to \(V \) (volumetric flow rate)
\[
 v = 60 \frac{m_p}{\rho}
\]

where
\[
\begin{align*}
 v & = \text{volume in cfm} \\
 m_p & = \text{mass in lbs/sec} \\
 \rho & = \text{density at smoke temp. in lbs/ft}^3
\end{align*}
\]
Axisymmetric Plume

- Result shows exhaust rate (fan size)
- Problems:
 - must know fire size
 - very dependent on height
 - does not address large area spaces
 - does not address dilution
 - Conservative for tall, small spaces

Balcony Spill Plume
Balcony Spill Plume

• Used where smoke may spread across ceiling before reaching open area
• Determine fire size and dimensions of space
 – $H = \text{height from fire to underside of balcony}$
 – $W = \text{width of spill between architectural projections}$
 – $z_b = \text{height from balcony to bottom of clear layer}$

Results in very high numbers

– What is a realistic plume width?
– Controversy about whether results are realistic for sprinkler protected spaces
– Much discussion regarding balcony spill plume correlations
Window Plume

- Least used plume correlation
- Application is limited
 - Fire confined to room
 - Effect of sprinklers in room
 - May be used if separation is glass or unrated construction
Other Considerations

- Plume Contact with Wall
 - Plume contact affects entrainment
 - Formula provided to estimate plume width
 - Plume flow rate can be considered constant once it hits the wall

Exhaust Method

- Plugholing
An Example Atrium

- Axisymmetric vs. Balcony Spill Plume
 - 50-foot tall atrium
- Axisymmetric Plume
 - 5,000 Btu/s design fire
 - ~148,000 cfm
- Balcony Spill Plume 1
 - 5,000 Btu/s fire
 - 12-foot spill width
 - ~372,000 cfm
- Balcony Spill Plume 2
 - 2,000 Btu/s fire (sprinkler control)
 - 12-foot spill width
 - ~274,000 cfm

Design Fire

- Code guidance
 - 2003 IBC
 - 5,000 Btu/sec (5,275 kW) minimum
 - May be modified with rational analysis
 - System duration:
 - 20 minute minimum
 - 2006 IBC
 - Based on a rational analysis
 - System duration (the least):
 - 20 minutes, or
 - 1.5 times the calculated egress time
 - NFPA 92B
 - Performance based design
Design Fire

• Fire Test Results

2 Panel Workstation Fire

- 0min, 10kW
- 1min, 10kW
- 2min, 70kW
- 3min, 215kW
- 4min, 680kW
- 5min, 1.7MW
- 8min, 1.3MW
- 10min, 1.1 MW
- 12min, 960kW
- 14min, 880kW
- 20min, 750kW
- 28min, 480kW
NIST Design Fire Data

Typical Design Fire Curve
Typical Design Fire Curve

Fire Model Types

- Algebraic Equations
- Zone models
 - One zone
 - Two zones
- Field models
 - Computational fluid dynamics (CFD)
Algebraic Equations

- Equations
 - Specific phenomenon
 - Finite applicability
 - Simple algebra
 - Identify variables
 - Solve equation
 - Calculator or spreadsheet

Algebraic Equations

- Alpert’s ceiling jet correlations
 - Temperature
 - Velocity
 - Variables
 - Ceiling height (H)
 - Radial distance from fire to point of interest (r)
 - Fire size (Q)
Algebraic Equations

• Alpert’s equations for ceiling jet temperature and velocity

\[T - T_{amb} = \frac{5.38(Q/r)^{3/2}}{H} \]

\[U = \frac{0.195Q^{1/3}H^{1/2}}{r^{1/6}} \]

r/H > 0.18

r/H > 0.15

Fig 3.4.1. Ceiling jet flow beneath an unconfined ceiling.
Algebraic Equations

- Alpert’s ceiling jet correlations
 - Limits of applicability
 - Geometry
 - Unconfined smooth ceiling
 - Ratio of r/H
 - Fire size
 - 668 kW < Q < 98 MW

Zone Models

Figure 1. Zone model terms.
Zone Models

- Conservation of mass
- Conservation of energy
- Ideal gas law
- Solution
 - Ordinary differential equations
 - Algebraic equations
 - 2 dimensions

Figure 2. Schematic of control volumes in a two-layer zone model.
Zone Models

- Dedicated computer program
- Spreadsheet approximations
- NIST CFAST
 - Technical Reference
 - Validation
 - Sensitivity
 - Robustness

Field Models
Field Models

- Conservation of mass
- Conservation of energy
- Conservation of momentum
- Ideal gas law
- Solution
 - Partial differential equations
 - 3 dimensions

Field Models

- Dedicated computer program
- Spreadsheets not possible
- NIST Fire Dynamics Simulator (FDS)
 - Technical Reference (3 volumes)
 - Mathematical model & numerical method
 - Validation
 - Verification
Case Study

- Two (7)-story university buildings
- Five-story atrium connecting the north and south towers
Design Parameters

• Axisymmetric Plume Scenario
 – Furniture Group
 – 177 second characteristic growth time
 – Peaks at 350 seconds
 – 4,115 kW fire
Design Parameters

• Balcony Spill Plume Scenario
 – Single piece of upholstered furniture
 – 150 second characteristic growth time
 – Automatic sprinkler activation at 130 seconds
 – 799 kW fire

Design Parameters

• Failure Criteria
 – Visibility
 • Greater than 33 feet (10 meters)
 – Upper Layer Temperature
 • Less than 120 °F (49°C) (single point)
 – Carbon Monoxide
 • Less than 3,000 ppm (single point)
FDS Model Elevations

Axisymmetric Plume Analysis

- IBC 909 calculations
 - 5 stories open
 - 5,275 kW (5,000 Btu/sec) fire
 - 230,000 cfm at the top of the atrium
 - 3 stories open
 - 5,275 kW (5,000 Btu/sec) fire
 - 130,000 cfm at the top of the atrium

- CFAST Simulation
 - 3 stories open
 - 4,115 kW fire
 - 200,000 cfm at the top of the atrium
Axisymmetric Plume Analysis

- FDS Simulation
 - 3 stories open
 - 4,115 kW fire
 - 70,000 cfm at the top of the atrium
Balcony Spill Plume Analysis

- IBC 909 calculations
 - 5 stories open
 - 768 kW (728 Btu/sec) fire
 - 216,000 cfm at the top of the atrium
 - 3 stories open
 - 768 kW (728 Btu/sec) fire
 - 130,000 cfm at the top of the atrium

- FDS Simulation
 - 3 stories open
 - 799 kW (757 Btu/sec) fire
 - 140,000 total exhaust
 » 100,000 cfm at the top of the atrium
 » 20,000 cfm above the 2nd and 3rd floor balconies
Summary

• Unexpected phenomena due to geometry
• IBC/NFPA 92B equations don’t address inlet locations
• Engineered analysis doesn’t always reduce the exhaust quantity

Thank You For Your Time!

Questions?

This concludes the Continuing Education Program

rjainc.com
1-888-831-4RJA
Roles of AEC Team Members in Smoke Control System Design

Protection Development, Incorporated
Objectives

• Understand each team members role in the successful implementation of a smoke control system
• Identify ways each member can improve the process
Overview

• Introduce the usual suspects
• Identify broad responsibilities
• Walk through a timeline of the process
• Highlight key aspects of the process with emphasis on roles and responsibilities
Team Org Chart

- AHJ
 - Owner/Developer
 - General Contractor
 - Architect
 - Sub-Contractors
 - A/E Team Members
 - CxA / 3rd Party / Special Inspector
Who are the Players?

• Owner/Developer
• Architect
• General Contractor
• Fire Protection Engineer
• AHJ
 – Building/Fire Official
 – Insurance Carrier
Who else is involved?

• MEP Engineer – Works in conjunction with the Architect and FPE to select, or assist in selection of products and design of the system.
Who else is involved?

- Testing and Balancing Contractor – Works in conjunction with Special Inspector to commission the system.
- Fire Alarm Contractor – Primary system controls.
- Sprinkler Contractor – Interface with system controls.
Who else is involved?

• HVAC Contractor – Major system components.
• Interior Designer – Furniture selection.
• Specialties Contractor – Special system components.
Who else is involved?

• That’s at least 14 different entities!!!
What does the Code say?

• The **Building Official** (AHJ) shall:
 – Receive, review, and issue permits for construction (IBC 104.2)
 – Render interpretations of the Code (IBC 104.1)
 – Make all required inspections or accept reports of inspection (IBC 104.4)
What does the Code say?

• The **Owner** (or authorized agent) shall:
 – Apply for and obtain all required permits (IBC 105.1)
 – Engage and designate a Registered Design Professional in Responsible Charge (RDPiRC) (IBC 107.3.4)
 – Engage the Special Inspector (IBC 1703.1.1)
What does the Code say?

- The **Architect** (RDPiRC) shall:
 - Review and coordinate submittal documents prepared by others for compatibility with the design of the building (IBC 107.3.4)
 - Prepare a statement of special inspections (IBC 1704.3)
What does the Code say?

• The **FPE / ME**(Registered Design Professional) shall:

 – Prepare Construction Documents. (IBC 107.1)

 – Prepare a rational analysis supporting the types of smoke control systems to be employed and their methods of operation. (IBC 909.4)

 – Sign, seal, and date the final complete report of testing by the Special Inspector. (IBC 909.18.8.3)
What does the Code say?

• The Special Inspector shall:
 – Be objective, competent and independent from the contractor responsible for the work being inspected. (IBC 1703.1.1)
 – Keep records of special inspections and furnish reports to the Building Official and RDPiRC. (1704.2.4)
 – Have expertise in fire protection engineering, mechanical engineering, and certification as air balancers. (IBC 909.18.8.2)
What does the Code say?

• The **Contractor** shall:
 – IBC has no defined role for the Contractor as it relates to smoke control systems.
 – Submit Statement of Compliance for fire protection system installations prior to final inspections (IFC 901.2.1)
 – Local requirements may define the role further:
 • Coordinate subs, provide access to site, notify Special Inspector, etc.
Timeline of Events

<table>
<thead>
<tr>
<th>Pre-Design Phase</th>
<th>Design Phase</th>
<th>Bidding and Pre-Construction Phase</th>
<th>Construction Phase</th>
<th>Testing and Acceptance Phase</th>
</tr>
</thead>
</table>
Change Cost Multiplier Affect vs. Time

Actual $$$ vs. Time

Construction Begins

Base Cost
Pre-Design Phase

Identification of Atrium properties (complexity)

Select the RDIPC

Select the FPE

Work through major design challenges by answering key questions

Pre-Design Phase

Finalize building design concept.
Pre-Design Phase

• Owner and Architect are heavily involved during this phase.
• A/E team members could/should be involved in planning
 – Define role of ME and FPE
• GC or cost estimator could be brought on
Define role of ME and FPE – Option 1

• FPE
 – Select design fire and system design methodology
 – Identify the required exhaust volume
 – Document the rational analysis
 – Select control system and activation method

• ME
 – Specify ductwork, fans, louvers, dampers, etc. to meet the FPE defined requirements
Define role of ME and FPE – Option 2

• ME
 – Select design fire and system design methodology
 – Identify the required exhaust volume
 – Specify ductwork, fans, louvers, dampers, etc. to meet the FPE defined requirements

• FPE (as quasi 3rd Party)
 – Review design to document the rational analysis
 – Select control system and activation method
Pre-Design Phase

• Greatest Influence by:
 – Owner
 – Architect

• Try to answer the following questions in this Phase:
 – Will the Atrium take a “complex geometry”?
 – Where will make-up air be provided from?
 – Will the Atrium be furnished (heavy or light)?
Pre-Design Phase

• Simple vs. Complex Geometry
Pre-Design Phase

• Simple vs. Complex Geometry
• Air inlet and exhaust locations
Pre-Design Phase

• Furnishings
Pre-Design Phase

• Furnishings
Pre-Design Phase

• Furnishings
Pre-Design Phase

• Furnishings
Timeline of Events

<table>
<thead>
<tr>
<th>Pre-Design Phase</th>
<th>Design Phase</th>
<th>Bidding and Pre-Construction Phase</th>
<th>Construction Phase</th>
<th>Testing and Acceptance Phase</th>
</tr>
</thead>
</table>
Design Phase

- Complete Atrium Design Configuration
- Discuss Specifics with the AHJ, Development of Budget
- Atrium Smoke Control Design Accepted by AHJ
- Cost estimation with GC/subs or consultant

Design Phase

Detailed building design, Plan review and permitting, cost estimation, and finalize project budget.
Design Phase

• Greatest Influence by:
 – FPE and AHJ
 – Architect and MEP
 – Owner

• Accomplish the following in this Phase:
 – AHJ engaged as a part of the design team.
 – Specify as much equipment as possible.
 – Engage the CxA
 – Identify costs
Design Phase

• FPE and AHJ
 – FPE must engage the AHJ to be a part of the design.
 • Design fire
 • Communicating spaces
 • Tenability criteria
 – Handbook by ICC, SFPE, etc.
Design Phase

• FPE and AHJ
 – AHJ must review and respond to questions of interpretation in a timely manner to aid success.
 • IFC Section 104.7.2 – the Fire Code Official is authorized to required the Owner or agent to provide, with out charge to the jurisdiction, a technical opinion and report.
Design Phase

• FPE and AHJ
 – Work together to resolve concerns
Design Phase

• Architect, MEP, and FPE
 – Specify as much equipment as possible.
Design Phase

• Architect, MEP, and FPE
 – Specify as much equipment as possible.
Design Phase

• Architect, MEP, and FPE
 – Specify as much equipment as possible.
Design Phase

• Architect, MEP, and FPE
 – Specify as much equipment as possible.
Design Phase

• Architect, MEP, and FPE
 – Specify as much equipment as possible.
Design Phase

• Architect, MEP, and FPE
 – Specify as much equipment as possible.
Design Phase

• Architect, MEP, and FPE
 – Specify as much equipment as possible.
Design Phase

• Architect, MEP, and FPE
 – Specify as much equipment as possible.
Design Phase

- Architect, MEP, and FPE
 - Specify as much equipment as possible.
Design Phase

- Owner
 - Engage the CxA
 - Identify costs
Change Cost Multiplier Affect vs. Time

Time

Construction Begins

Actual $$

Base Cost
Timeline of Events

<table>
<thead>
<tr>
<th>Pre-Design Phase</th>
<th>Design Phase</th>
<th>Bidding and Pre-Construction Phase</th>
<th>Construction Phase</th>
<th>Testing and Acceptance Phase</th>
</tr>
</thead>
</table>

2014 © Protection Development, Incorporated
Bidding and Pre-Construction Phase

- Bidding, bid review, and award construction contract.
- Hire subcontractors.
- Submittal review and approval by A/E Team.
- *Begin sprinkler and fire alarm shop drawings, trade permit plan review by AHJ, and finalize the CxA Plan.
Bidding and Pre-Construction Phase

• Greatest Influence by:
 – Contractor/Sub-contractors

• Accomplish the following in this Phase:
 – Identify all items needing clarification
 – Select final products
Bidding and Pre-Construction Phase

- Contractor/Sub-contractors
 - Identify all items needing clarification
 - NFPA 92, 6.4.5.4.8 - Positive confirmation of fully open/closed damper position
Bidding and Pre-Construction Phase

• Contractor/Sub-contractors
 – Identify all items needing clarification
 – NFPA 92, 6.4.8.1 – positive confirmation required for all components.
Bidding and Pre-Construction Phase

- Contractor/Sub-contractors
 - Identify all items needing clarification
 - Avoid product substitutions and read all documentation carefully.

<table>
<thead>
<tr>
<th>Color</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>57 °C (135 °F)</td>
</tr>
<tr>
<td>Red</td>
<td>68 °C (155 °F)</td>
</tr>
<tr>
<td>Yellow</td>
<td>79 °C (175 °F)</td>
</tr>
<tr>
<td>Green</td>
<td>93 °C (200 °F)</td>
</tr>
<tr>
<td>Blue</td>
<td>141 °C (286 °F)</td>
</tr>
</tbody>
</table>
Bidding and Pre-Construction Phase

• Contractor/Sub-contractors
 – Identify all items needing clarification
 – Avoid product substitutions and read all documentation carefully.
Bidding and Pre-Construction Phase

• Contractor/Sub-contractors
 – Identify all items needing clarification
 – IBC 909.12.1 – Detection and control wiring shall be enclosed in continuous raceway.
Bidding and Pre-Construction Phase

• Contractor/Sub-contractors
 – Identify all items needing clarification
 – IBC 909.16.1 – LED color requirements
Timeline of Events

<table>
<thead>
<tr>
<th>Pre-Design Phase</th>
<th>Design Phase</th>
<th>Bidding and Pre-Construction Phase</th>
<th>Construction Phase</th>
<th>Testing and Acceptance Phase</th>
</tr>
</thead>
</table>
Construction Phase

Construction begins, trade permits issued, trades are installed, conduct construction progress inspections, RFI, PR, and CO process begins.

- Trades are installed
- Overcome unforeseen conditions and field conflicts
- Special Inspections begin
Construction Phase

• Greatest Influence by:
 – Contractor
 – CxA

• Accomplish the following in this Phase:
 – Quality installation practices
 – Resolve field conflicts through A/E team
 – Coordinate progress inspections
Bidding and Pre-Construction Phase

- CxA
 - Plans, procedures should follow NFPA 3
 - Required Documents and Equipment (RDEs)
 - Pre-Functional Checklist (PFCs)
 - Functional Performance Testing (FPTs)
Timeline of Events

<table>
<thead>
<tr>
<th>Pre-Design Phase</th>
<th>Design Phase</th>
<th>Bidding and Pre-Construction Phase</th>
<th>Construction Phase</th>
<th>Testing and Acceptance Phase</th>
</tr>
</thead>
</table>
Testing and Acceptance Phase

- Contractor pre-testing followed by AHJ and A/E inspections
- CxA continues to completion
- Subcontractor coordination is critical for testing

Testing and Acceptance Phase
Preliminary testing, final testing, commissioning, building turn-over to Owner.
Testing and Acceptance Phase

• Greatest Influence by:
 – Contractor/Architect
 – CxA

• Accomplish the following in this Phase:
 – Coordinate efforts between construction and design team
 – This is where the hard work pays off!!
Summary

• Roles defined by Code
 – Building/Fire Official
 • Review plans, issue permits, conduct inspections
 • Interpret the Code
 – Owner
 • Assign the RDPiRC
 – Architect
 • Coordinate registered design professionals
 • Review and coordinate deferred submittals
 • Determination of Special Inspections
 – FPE
 • Design Rational Analysis
 – Special Inspector
 • Perform and document inspections
Summary

• How to improve the process
 – Owner
 • Assemble team members as early as possible in the design
 • Make influencing decisions early
 – Architect
 • Finalize critical Atrium properties early in design
 • Coordinate the specification of all products in design
 • Limit deferred submittals
 – FPE
 • Engage the AHJ as a design team member
 • Carefully select and review products with Architect and Owner
 – AHJ
 • Quickly review, interpret, and communicate requirements to design team
 – Special Inspector
 • Complete testing plan early in design in coordination with design team
Summary

• How to improve the process
 – Contractor
 • Work to clarify issues early in construction
 • Diligently coordinate construction with progress inspections
 – Fire Alarm Contractor
 • Carefully review the Design Rational Analysis
 • Only modify controls after approval of FPE
 – Sprinkler Contractor
 • Carefully review the Design Rational Analysis
 • Only modify materials, especially sprinkler head types, after approval of FPE
Questions
Who to Contact

Fire Protection Engineering

Vice President and General Manager
Senior Fire Protection Engineer
gziemba@pdifire.com

Life Safety / Building and Fire Code Consulting

Temple R. Kennedy, CBCO, CFCO
Technical Services Manager
Fire Protection & Code Analyst
tkennedy@pdifire.com

Security System Design and Consulting

William Mueller
Senior Fire Systems Designer
wmueller@pdifire.com

8620 North New Braunfels Avenue, Suite 100
San Antonio, Texas 78217-6361
210.828.7533

111 North Hasler Boulevard, Suite 211
Bastrop, Texas 78602
512.581.4331

www.PDIFire.com